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For anyone who knows anything about real-time 3D graphics, something truly exciting is taking 
place in the industry right now: the proliferation of real-time ray tracing. Often described as the 
‘holy grail’ of computer graphics, ray tracing is where a 3D scene is generated using a technique 
that mimics how light behaves in the real world, thus providing developers with the tools to make 
incredibly realistic visuals.

In 2016, Imagination introduced a board featuring the world’s first dedicated ray tracing 
accelerator that, for the first time, delivered enough performance for the technology to be  
used practically, in real-time. In 2018, the PC desktop market took the first steps to embrace  
ray tracing and in 2020 the console market followed. In 2021, Imagination is delivering ray tracing 
IP technology for the mobile phone market by adding the high-efficiency focused PowerVR 
Photon architecture-based Ray Acceleration Cluster (RAC) into its C-Series graphics processing 
units (GPUs).

Intro

Imagination first announced its ray tracing technology in 2014, and in 2016 produced a demo board known as “Plato”.
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Imagination has been delivering market-leading efficiency-focused GPUs for over 25 years. 
The PowerVR Photon ray tracing architecture is deeply integrated with the latest generation of 
PowerVR GPUs – the IMG CXT series.

Evolution 

While the PowerVR architecture has evolved over many generations since 1996, in this paper 
we focus  only on the latest iteration of our architecture which started with the IMG AXT series 
in 2019. AXT was a radical redesign of the PowerVR GPU architecture, with a focus on making a 
significant leap forward in power, performance, area and bandwidth (PPAB) efficiency. This was 
achieved through a revolutionary new ultra-wide arithmetic logic unit (ALU) architecture, which 
processes up to 128 scalar data lanes concurrently within a task (warp). To ensure the highest 
utilisation of this ultra-wide architecture many novel scheduling advances were introduced, 
including triangle merging and task packing. 

To keep bandwidth low, we also introduced the latest version of our IMGIC compression, which 
added lossy framebuffer (render target) compression to our already extensive usage of lossless 
compression, for depth buffers, render targets, textures and geometry. The texture unit was also 
completely redesigned for quality and bandwidth efficiency and a customer configurable cache 
architecture was enabled.

In 2020, the IMG BXT series added another innovation: decentralised multi-core. This enabled 
scaling beyond our traditional smartphone market segments and opened up new business 
opportunities in the desktop, data centre and automotive ADAS market segments. This multi-
core approach fully embraces new silicon process nodes with a strong focus on physical design 
optimisation and tuning for the best PPAB, as well as embracing new technology directions that 
bring cost and efficiency benefits, such as chiplets.

In November of 2021, we revealed the IMG CXT series and its standout feature: the PowerVR 
Photon architecture, offering hyper-efficient hybrid ray tracing, as detailed further in this white 
paper. Process-node-specific tuning has continued, to deliver the most optimal sweet spot 
designs for 7nm, 5nm and even 3nm process technology.

BXT

PowerVR GPU Architecture

• New ultra-wide ALU
•  Improved TPU design  

and efficiency 
• Configurable cache sizes
•  Improved compression 

algorithms
• Major PPAB improvement leap

•  Extended scalability using  
multi-core
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• Improved compute efficiency
• Micro-architectual tuning
• Physical design optimisations

•  Ray tracing enabled core 
configurations

•  Scalability – more base core 
options

• Micro-architectural tuning

AXT CXT

RAC
11
3

2
4



© Imagination Technologies 4

The PowerVR architecture includes many patent-protected innovations, and has for many years 
offered unique benefits to our customers and partners, and many of these continue to offer 
value. These are highlighted in the next section. 

Tile-Based Deferred Rendering
The traditional rendering technique on most GPUs is known as immediate mode rendering 
(IMR), where geometry is sent to the GPU and is drawn straight away. This simple architecture is 
inefficient, resulting in wasted processing power and memory bandwidth. Pixels are often still 
rendered despite never being visible on the screen, such as when a tree is completely obscured  
by a building closer to the viewer.

PowerVR’s tile-based deferred rendering (TBDR) architecture works in a much smarter way. It 
captures the whole scene before starting to render, so occluded pixels can be identified and 
rejected before they are processed. The hardware starts by splitting up the geometry data into 
small rectangular regions that will be processed as one image, which we call “tiles”. Each tile is 
rasterised and processed separately, and as the size of the tile is small, it enables all data to be  
kept in very fast, yet low-power, on-chip memory.

Deferred rendering means that the architecture will delay all texturing and shading operations 
until all objects have been tested for visibility. The efficiency of PowerVR hidden surface removal 
(HSR) is high enough to allow overdraw to be removed entirely for completely opaque renders. 
This significantly reduces system memory bandwidth requirements, which in turn increases 
performance and reduces power requirements. This is a critical advantage for smartphones, 
tablets, and other devices where battery life makes all the difference.

Imagination Image Compression 
Imagination Image Compression (IMGIC) is the latest version of our framebuffer (render target) 
compression technology. Framebuffer compression aims to reduce bandwidth and power 
consumption generated by reading and writing render targets to and from system memory. 
IMGIC includes a lossless compression mode using variable compression, where quality remains 
perfect but the compression achieved depends on the contents of the render target. Typically,  
a reduction of 50% is obtained across a wide range of reference test images. 

IMGIC also includes a visually lossless compression mode that guarantees a minimum 
compression rate, thus ensuring that memory footprint, bandwidth and power consumption 
are all reduced. IMGIC includes up to three compression rate levels versus uncompressed:
• 75% - Effectively perfect image quality
• 50% - Visually lossless quality
• 25% - Extreme bandwidth saving

Trading quality against bandwidth to ensure performance can be maintained is a common 
approach that is widely used in video streaming and conferencing systems to improve the  
user experience.

Key Features
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Ultra-Wide ALU
Since A-Series, PowerVR GPUs deploy a new 128-wide arithmetic logic unit (ALU) architecture 
that embraces a simpler RISC-style form of ALU engine. By moving to simpler engines, we can 
pack many more lanes into the same silicon area and power budget, fully embracing massive 
thread-level parallelism and simplifying compiler effort to gain high utilisation and efficiency. 
This approach is further combined with a wide range of complimentary scheduling technologies 
which ensure this ultra-wide warp (task) size is used effectively, including triangle and task 
merging mechanisms. This was critical to delivering the major improvement in density (fps/mm2) 
and power efficiency (fps/w) within the IMG A-Series.

Superscalar ALU Processing
Imagination’s ALU fully embraces superscalar processing, allowing many ALU types and  
co-processors to operate concurrently for the highest efficiency and utilisation. This includes 
floating-point pipelines, integer pipelines, complex ops pipelines, test/branch pipelines, bitwise 
operation pipelines and DMA units all working concurrently based on data availability and 
instruction mix in the shaders/kernels.

ASYNC Everything
Due to their TBDR nature, PowerVR GPUs inherently require asynchronous concurrent 
processing of different types of tasks. Traditionally, this has been for geometry (also known as tile 
accelerator, or TA) and pixel/fragment (also known as 3D) processing tasks running concurrently 
in the GPU. With the addition of compute (OpenCL) this was also enabled concurrently and today 
this is known as the “asynchronous compute” feature in most GPU specifications. PowerVR GPUs 
also support 2D/housekeeping tasks concurrently as special jobs for simple non-3D (geometry) 
processing as well as data movement. Now, in CXT, we add concurrent asynchronous ray tracing 
in the mix.

This means that CXT GPUs may now have up to five different tasks types executing concurrently 
within the GPU: geometry, fragment/pixel, compute, 2D and ray tracing.

Firmware-Based GPUs 
In many architectures, hardware graphics events are handled on the CPU by the graphics 
driver. All PowerVR graphics cores, however, are managed by a firmware running on a small 
C-programmable microcontroller inside the GPU itself. This enables the graphics processor to 
handle the majority of high-level graphics events internally with ultra-low-latency. This approach 
also reduces the graphics driver’s host CPU overhead and offers a wide range of beneficial extra 
features such as:
•  GPU debugging: effectively the embedded firmware processor can act as a debug server, 

enabling developers to breakpoint and inspect the GPU workloads.
•  DVFS management: the firmware processor has access to numerous hardware performance 

counters and workload analysis counters, allowing for ultra-low-latency decisions on ramping 
clock frequency up or down, for best power efficiency.

Key Features continued...
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•  Generalised IO: the firmware processor has several general-purpose signals available, which 
can be used for hardware-based synchronisation mechanisms with third-party IP blocks within 
the same silicon-on-chip (SoC), allowing for ultra-low-latency response times and efficient 
heterogeneous processing.

Decentralised Multi-Core
The traditional approach to GPU scalability is limited by the connections between centralised 
shared blocks and the shader cores. Typically, the shared logic includes a centralised memory 
data path, job manager and geometry tiling engines. The central dependency generates a star-
network-style structure where all cores need to be connected to this single centralised entity. 
However, this causes issues with congestion and layout flexibility.

Imagination’s novel approach to multi-core instantiates a flexible number of GPU cores without 
a direct dependency on a connection to a central unit. In its simplest form this can be seen as 
multiple GPUs, which are present in an SoC design, but with the ability for cores to jointly work 
on compute and graphics processing. Each core within this approach is designed as a fully 
independent GPU, containing all the functionality required to self-manage and execute workloads 
based on priority. 

The fundamental change to previous layouts is that instead of a single core directly working on a 
workload we now have multiple GPU instances sharing command streams and jointly finishing the 
work as quickly as possible. By working on distinct regions of the work (the render target) in each 
GPU core our bandwidth efficiency is maintained, as each core continues to work on a coherent 
region of the screen, thus ensuring maximal cache hit efficiency. A similar approach also applies 
to other processing types, including geometry and compute processing, which can be assigned 
to different GPU cores for processing.

PowerVR’s decentralised approach is a great fit for emerging physical design concepts,  
including chiplets, where a distributed working model offers numerous efficiency and dynamic 
flexibility benefits.

Key Features continued...
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Introducing the IMG CXT GPU
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A high-level view of the IMG CXT GPU can be seen in the diagram above. The main components 
of the GPU include:

•  Unified Shading Cluster (USC) – the compute heart of the GPU, a multi-threaded programmable 
SIMT processor which can simultaneously process pixel data, geometry data, compute data as 
well as 2D/copy housekeeping tasks. More USCs equates to higher compute performance for 
the GPU configuration.

•  Texture Processing Unit (TPU) – handles texture addressing, sampling and filtering in highly-
optimised logic. More texture unit equates to higher visual complexity, greater refresh rates  
and increased display resolution support.

•  Raster/Geometry Block – a collection of fixed-function units enabling post- and pre-processing 
of data before/after processing by the USC including culling, clipping, tiling, compression, 
decompression, iteration, etc.

•  Top-level (CXT RT3) – including L3 cache, AXI bus interfaces and firmware processor
•    Ray Acceleration Cluster (RAC) – a new dedicated block for efficient handling of all ray tracing     

processing stages.

Additionally, compared to the previous IMG B-Series, the CXT contains 50% more ALU, TPU  
and geometry performance in a single-core unit.

A high-level view of the IMG CXT GPU



© Imagination Technologies 8

Introducing the IMG CXT GPU continued...

Similar to the B-Series GPUs the CXT GPU is also multi-core capable enabling scaling up to  
four cores:
In the above “beyond desktop” configuration, the design also includes extra optional IP blocks:
•  NNA – our neural network acceleration units provide highly power, performance, efficiency-

optimised neural network processing. These units can co-work with the IMG CXT GPU and 
offer up to 100 TOPS of AI performance in a multi-core configuration with up to eight cores (six 
shown above).

•  OCM – on-chip shared memory, which can be used to efficiently exchange data between the 
IMG CXT GPU and NNA units. OCM can also be used for interaction with other IP blocks by 
keeping data on chip for highest throughput, lowest latency and the best power efficiency.

•  EPP – Imagination’s Ethernet Packet Processor (EPP) IP is a family of scalable multi-port IEEE 
802.3 multi-gigabit Ethernet switch and router solutions. Silicon-proven, the IP is specifically 
designed to meet the demanding communications requirements for high-performance 
managed and unmanaged multi-port switches and routers and is ideally suited for the 
automotive sector and other network processing markets. Within the design shown here the 
EPP would enable high-speed connectivity between GPU groups and/or data storage units or 
even allow for direct streaming of video compressed gaming streams.

Automotive Grade 
Thanks to the coherency gathering in the Level 4 RTLS architecture (explained below), the  
IMG CXT is also ideally suited for ultra-premium automotive gaming and HMI platforms. It enables 
higher efficiency when rendering complexed curved surfaces such as car bodywork, making it 
an ideal fit for photorealistic ray traced car rendering for the perfect representation of vehicles 
across dash-wide displays. The Photon architecture is tightly integrated into our IMG CXT GPU, 
which can be deployed alongside our functionally safe IMG BXS GPUs, which have been designed 
using processes that conform to the ISO 26262 standard for automotive safety. These can 
support advanced driver assistance systems (ADAS) and autonomous driving – all enabled by 
Imagination IP.
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The IMG CXT is designed to scale to four cores, delivering up to 9TFLOPS FP32 and 7.8GRay/s of performance.

EPP
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Introducing the IMG CXT GPU continued...

A summary of GPU features for the above two configurations can be found in the table below:

GPU Feature Premium  
Mobile Configuration

Beyond  
Mobile Configuration

Architecture CXT CXT-MC

GPU Type TBDR TBDR

Ray Tracing Level Level 4 Level 4

Configuration CXT-48-1536 RT3 CXT-48-1536 RT3 MC4

Scalable Processing Units (SPU) 3 12

Multi-Core 1x 4x

Cache Size Configurable 128 - 2048KB 512 - 8192KB

Ray Acceleration Clusters 3 12

ALU Clusters (USC) 6 24

Texture Processing Units (TPU) 6 24

Peak Texels per Clock 48 192

Peak FP32 Ops per Clock 1536 6144

Peak INT8 Ops per Clock 6,144 24,576

Peak Blend Rate per Clock 48 192

Typical Clock Up to 1GHz Up to 1.5GHz

Peak GRays/sec 1.3 7.8

Peak GBoxTests/Sec 16 96

Peak FP32 TFLOPS 1.536 9.216

Peak AI 8b TOPS 6.144 36.864

Peak GTexels/Sec 48 288

Process Node Soft IP allows targeting of  
12nm, 7nm, 5nm, 4nm, 3nm, etc.

Available IP available for licensing now

Customers Multiple, across diverse target markets

It should be noted that the CXT architecture is highly scalable and configurable to meet a wide 
range of market and customer requirements. The above configurations are examples only.
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PowerVR Photon Ray Acceleration Cluster

Ray Tracing Summary
Since the early days of 3D, traditional rendering has been performed using rasterisation, where 
the geometry of objects are built up using a mesh of triangles and then ‘shaded’ to create their 
appearance. However, with rasterisation the way the world is lit can be only be approximated.

Ray tracing is different.

It mimics how light works in the real world, where photons are emitted from a light source and 
bounced around the scene until they reach the eye of the viewer. Ray tracing sends out rays  
from the viewer (the screen) into the scene, onto objects and from there to the light source.  
As the light interacts with objects it is blocked, reflected, or refracted by the objects along  
the way, depending on their material properties, creating shadows and reflections, even of  
off-screen objects.

And once the rays are fired into the scene the lighting process occurs naturally, which means 
developers do not have to spend time creating, “fake” lighting effects.

This elegant approach to lighting scenes helps delivers graphics with far greater realism, improving 
games and visual applications while simplifying the lighting process for content creators.

To better understand the fundamentals of ray tracing read our white paper, “Shining a Light on 
Ray Tracing”.

Ray Tracing Efficiency
Ray tracing is a technology that is currently dominating headlines as the next step in graphics 
technology and since the end of 2020 has been widely available to consumers across desktop 
personal computers (PCs) and consoles. To highlight the differences between different types of 
ray tracing acceleration, Imagination has created a white paper which introduced the concept 
of ray tracing levels to make clear that not all ray tracing solutions are created equally, and that 
higher-level ray tracing is more capable and feature-rich than the lower levels. As the levels are 
incremental this white paper introduces the architectural changes and capabilities as we build up 
from Level 0 to Level 5. Download our white paper to identify your level of ray tracing.

Legacy Solutions

Software on Traditional GPUs

Ray/Box and Ray/Triangle Testers

BVH Processing in Hardware

BVH Processing with Coherency Sort in Hardware

Coherent BVH Processing with BVH Hardware Builder

2

3

4

5

1

0

https://www.imaginationtech.com/whitepapers/ray-tracing-levels-system/
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Not all forms of ray tracing support are equal. The reality is that any compute-capable GPU  
can perform ray tracing, but what differentiates them is the efficiency with which it can be 
executed and the performance level which can be achieved. For this reason, Imagination 
introduced the concept of the Ray Tracing Levels System (RTLS) to highlight the various levels of 
ray tracing efficiency. 

Level 1 on the RTLS is full software/shader-based ray tracing and also indicates how much 
offloading there is from the ALU pipelines, which do all the heavy lifting when you are using 
compute-based ray tracing. A Level 2 RTLS solution offloads the bulk of the ray intersection 
compute cost from the ALU pipelines, and this is where the concept of ray testing versus 
bounding boxes and triangles inside a bounding volume hierarchy (BVH) structure is introduced. 
This intersection-testing work requires many instructions, and these can be handled much more 
efficiently in a fixed-function hardware block dedicated to the task.

Level 2 RTLS – Adding Box/Triangle Testers

The problem with this approach is that all the other ray tracing work remains on the shader cores, 
which, unfortunately, is highly divergent code with many branches, since based on each bounding 
box intersection you decide which lower-level boxes, and ultimately, triangles, you need to test. 
Branches are inefficient to process on parallel compute engines such as GPUs, hence, this 
process is not a good fit for execution on the shader engines. 

Therefore, for every ray cast, multiple levels of bounding box data have to be fetched and tested 
– and then, based on hits or misses, more data has to be identified and fetched from memory. 
Effectively then, the whole traversal of the BVH structure is done in shader code that is branch 
heavy and divergent, which is not a good fit for the same instruction multiple threads (SIMT) 
architecture of the GPU.

IMG CXT: delivering state-of-the-art ray tracing
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IMG CXT delivering state-of-the-art ray tracing continued...

To compound matters, the complexity of the BVH structure grows with more complex scenes, 
which means that many levels of boxes and triangles will have to be tested to find the hit (or miss) 
for each ray. This count is not the same for each ray (e.g., some rays may miss immediately, while 
others may take many levels), which again is a poor computational fit for the parallel processing 
architecture of the GPU, leading to a lot of lost performance. 

Worse still, as each ray can go in a different direction and take a different path through the BVH 
structure, the data access is also divergent and thus non-coherent. This means that cache hits 
will be very low, and the GPU will suffer very long latencies before box or triangle/ray intersection 
tests can be executed, again potentially leading to pipeline bubbles and low processing efficiency.

From all of this it can be understood that while some of the arithmetic cost is offloaded from 
them, shader cores are still inefficient for ray tracing, as too much work remains in software and is 
of a nature that does not fit well with the optimisation strategy of the GPU. 

Hence this approach is a Level 2 RTLS solution – better than full software, but unlikely to be 
efficient, and, when considering mobile solutions, unlikely to be usable in real-world power and 
bandwidth budgets.

Level 3 RTLS – Full Hardware BVH Traversal
In a typical Level 3 RTLS solution (illustrated below) the BVH traversal moves from the GPU ALU 
pipelines into a dedicated processing unit. As the nature of the BVH walking remains divergent, 
the most common approach to handling this is to adopt a multiple instruction multiple data 
(MIMD) architecture. 
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IMG CXT delivering state-of-the-art ray tracing continued...

This is a design that accepts divergence (where each ray is different from all the other rays 
and hence requires its own logic) as part of the processing design. This costs both silicon area 
and power, and is very different from the typical way GPUs achieve their efficiency and high 
performance, namely – many units all doing the same thing (parallelism).  

While a MIMD design is parallel, it is more like a many-core CPU design where each core does 
something different. This executes efficiently – e.g., every unit does work, but in area and power 
cost it is linear, as you replicate all logic for every unit. The benefit, versus the usage of the ALU 
cores, is that each unit will do useful work each clock, wherein the SIMT GPU design, many lanes 
will go idle due to the divergence. 

This is a higher level of efficiency, as the BVH walking on the MIMD unit will be more effective than 
trying to run it on the SIMT structure of the GPU ALU pipelines. Unfortunately, while the MIMD unit 
enables divergent processing to gain efficiency (be it area and power costs) the divergence of 
the data remains a fact. As the name says, it’s “multiple data”, which, just as in the Level 2 RTLS 
solution, puts a lot of strain on the cache hierarchy and the memory subsystem. This is because 
this data access remains divergent, resulting in poor cache hits and, ultimately, high bandwidth, 
power, and efficiency costs. It also has a risk of pipeline “bubbles” (a delay in execution of an 
instruction), which is where the box/triangle testers, BVH traversal units and shader pipelines will 
stall, as the job will be limited by the memory speed. 

Again, using this type of architecture in smartphones is unlikely to be effective, as compared to 
desktop GPUs they have minimal bandwidth budgets, and worse, as there is no GPU-specific 
memory they share that bandwidth budget with the CPU and other processing units. They 
instead rely on an architecture with unified memory, which means shared bandwidth and even 
longer latencies. Some desktop GPUs have 128MB of on-chip cache to help, claiming that most 
of the BVH structure will fit into this memory, but large caches demand more silicon area and 
cost power to operate. Again, this type of dedicated buffering, a brute force solution, is simply 
not viable in a smartphone product, where a premium GPU typically has a 2MB cache. As such, a 
superior, higher-efficiency solution to the problem of divergence is essential.

PowerVR Photon – Level 4 RTLS
PowerVR has always been synonymous with efficiency thanks to its ultra-efficient tile-based 
deferred rendering approach, avoiding the brute force immediate mode rendering strategy. In 
developing our ray tracing solution, first demonstrated in hardware in 2016, we have taken the 
same approach. The PowerVR Photon architecture is the latest incarnation of this technology, 
designed to enable ray tracing in smartphone power and bandwidth budgets, while also allowing 
this efficiency to be scaled up into markets beyond mobile. 

The problem at the core of ray tracing is a lack of coherency; rays can, and will, go into random 
directions. The problem is that this clashes with the parallelism designed into traditional GPUs. 
The best solution to tackle this issue is by focusing on the workload, and for this, we introduce a 
coherency gathering unit. 
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IMG CXT delivering state-of-the-art ray tracing continued...
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With this unit, the BVH walking is still fully offloaded, but it now becomes a scheduling problem. 
We have many rays which we can store and the coherency unit then looks to group rays into 
packets or bundles which are similar – as in, rays that take similar paths through the BVH 
acceleration structure: these are said to be “coherent”. While they may be non-coherent from one 
ray to the next, averaged across many rays there are always similarities and correlations that we 
can exploit, and this is exactly what the Photon architecture does. 

In it, rays are grouped into processing packets that will achieve high efficiency, not only in 
processing but also in memory access. This sorting gives us another benefit: rather than a MIMD 
architecture we return instead to the high-efficiency processing approach common inside the 
GPU: many units which all do the same thing. 

As a result, we can exploit parallelism as we do not just check one ray against one box, we can 
check many rays against the same box. This brings significant efficiency gains and reduces 
stress on the cache and memory subsystems. The same is true for triangle intersections: we can 
check a ray against multiple triangles concurrently. 

There are, therefore, four fundamental benefits to the Photon architecture:
• Full BVH traversal and box/tri-testing offload from the ALU pipelines
• Coherency gathering ensuring that ray processing becomes parallel
•  Coherency gathering ensuring that data re-use is high and stress on cache and memory 

subsystems are significantly reduced
•  As many rays are in flight, ALU shading work and ray tracing can be decoupled, allowing latency 

absorption to become effective

The above concepts have been in proven hardware designs used for internal testing and analysis 
in Imagination since 2016. The results are now on show inside our Photon architecture as 
featured within our latest generation of IMG CXT GPUs, bringing hyper-efficient ray tracing to our 
mobile customers as well as other markets.
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IMG CXT delivering state of the art ray tracing continued...

MIMD versus SIMT 
Multiple instructions, multiple data, (MIMD), is an idiosyncratic type of parallel processing 
architecture designed to handle processing which, in effect, is not parallel in nature. As the name 
suggests, it involves different instructions (so different processing) and multiple data (so different 
information to work on). The problem with this is that to make MIMD fast you end up with many 
fully-featured individual processing units, all of which are designed to work individually with very 
little shared. This is because, as per the MIMD nature, there is no benefit from sharing anything 
since everything is different by definition. A massively multi-core CPU design is effectively MIMD 
and while this can process parallel compute jobs, such as neural networks for AI, we also know that 
compared to truly parallel designs this is not area, power or bandwidth-efficient.

GPUs by design are typically described as having an architecture that use the same instruction 
across multiple threads, (known as same instruction, multiple threads or SIMT) in nature, which 
means they execute the same work but on different data elements. These are typically vertices 
for geometry and pixels/fragments for shading, and now, for ray tracing. SIMT is highly efficient 
because we can deploy many units which all do the same work and hence can share a lot of logic, 
since to execute the same job there is a lot in common. SIMT therefore provides significant logic 
and processing efficiency gains. 

However, by accepting MIMD in your design, you essentially accept defeat and acknowledge 
that what you process is not parallel and that, as such, all the benefits of this parallelism are 
lost. The result are highly divergent needs, which means more silicon area and increased power 
consumption. In a MIMD structure, processing can also go out of sync, since one element may 
finish processing virtually immediately, (e.g. if a ray misses the first bounding box in the BVH) or it 
could take many 10s or even 100s of cycles of processing (e.g. say a ray which goes deep down 
the BVH structure to intersect a triangle). 

The problem with these different depths is that for the ray query to return to the SIMT ALU inside 
the GPU all rays need to finish and return to their warp. MIMD does not resolve this unless the 
whole GPU becomes MIMD, but then it loses all of its benefits and effectively becomes a massively 
parallel CPU design. Hence MIMD is parallel, but, in terms of the whole solution, not really, and 
therefore, is not an efficient nor smart solution to the processing problem of ray tracing.

Competitor MIMD Execution with four MIMD processors. Note how 
each processor executes with different stages and data (colours).

PowerVR SIMD style execution following coherency sorting. Note how each 
cycle the units execute the same instruction and use the same data.
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Ray Tracing Efficiency Summary

Level 2 Level 3 Level 4

Example  
implementations

2020 game console 
designs

2021 desktop 
designs

PowerVR CXT

ALU Offloading Partial Full Full

HW Box Testers Y Y Y

HW Triangle Testers Y Y Y

HW BVH Processing N Y Y

HW Coherency Sort N N Y

Cache Hit Rate Low Low/Medium High

Memory Latency 
Tolerance

Low Low High

Processing Efficiency Low  
(SIMT utilisation)

Low  
(MIMD)

High

Mobile Power Budget No No Yes
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PowerVR TBDR and Coherency Sorting 
PowerVR pioneered tile-based deferred rendering (TBDR) as far back as 1996. The focus of TBDR 
is efficiency, both in processing as well as bandwidth. Tile-based rendering does this by sorting all 
the triangle geometry into screen-space tiled regions first before rendering. This is different from 
immediate mode rendering (IMR) where every triangle is transformed and immediately drawn. The 
benefit of sorting all geometry and then rendering per screen-space tile region (usually 16x16 or 
32x32 pixels in size), is that we can complete the rendering of the tile region solely using on-chip 
memory for the depth/stencil buffer as well as the colour buffer. IMRs push all this bandwidth 
off-chip and depend on cache hits to reduce it, but as geometry submissions are not spatially 
coherent in screen space this caching approach typically fails, leading to high bandwidth, latency 
sensitivity and poor power efficiency. 

Therefore, by sorting geometry first the cache hit rate effectively becomes 100%. Additionally, 
depth and stencil buffers are often only used once and hence can be discarded. With GBuffer and 
MRT rendering many of the MRT “colour” targets are only used for intermediate scratchpad data 
and only one colour buffer is required to be written out to memory. With TBDR, all of this can be 
done on chip, saving memory footprint and very significant amounts of bandwidth. 

TBDR also offer significant benefits in handling anti-aliasing. As the oversampled buffers only 
ever exist in on-chip memory, only the downsampled colour targets are written out, yet again 
saving memory footprint and bandwidth.

The PowerVR Photon ray tracing architecture is in many ways identical to the PowerVR TBDR 
architecture in that a spatial sort is also done, only rather than in 2D screen space we bin rays  
into packets which travel along similar paths through the BVH. The benefits here are similar to 
what we find with coherency sorting; namely significant cache efficiency and reduced bandwidth, 
while processing remains in a SIMD/SIMT nature, ensuring high power efficiency of the logic and 
overall processing.

Ray tracing Efficiency Summary continued...
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Photon RAC In-Depth

Introducing the RAC – the Ray Acceleration Cluster
The PowerVR Photon architecture adds a new block into the PowerVR GPU called the ray 
acceleration cluster or RAC, and this is responsible for all ray tracing activity on the PowerVR 
GPU. This encompasses the entire process; from emitting a ray (from a shader/kernel) to 
returning the hit (or miss) results back to the ALU for processing. 

As rays are generated and results processed by graphics shader or compute kernel programs, 
the RAC is very closely coupled to the GPU’s ALU engines. While the units are closely linked to 
exchange ray and hit/miss information they are technically fully “decoupled”, meaning that both 
units operate concurrently to achieve the highest possible efficiency and utilisation. 

The RAC effectively handles the full BVH walking, including the very computationally intensive 
box/ray and triangle ray intersections, as well as efficiency optimisations such as the coherency 
sorting. The RAC is fully compatible with all modes and functionality exposed by the current ray 
tracing APIs, including Khronos Vulkan® extensions and Microsoft DirectX ray tracing. 

The RAC is a scalable unit supporting multiple performance points (e.g., 1x, 0.5x, 0.25x of a RAC) 
as well as multi-core scalability (2x and beyond), where multiple RACs can be placed next to the 
ALU unit(s). Within the current PowerVR GPU design a RAC is shared by two 128-wide ALU units, 
enabling increased utilisation of the RAC, ALU and texture processing unit (TPU). 

The combination of RAC, two ALUs and two TPU units with scheduling logic and other fixed-
function support is called the Scalable Processing Unit (SPU). This forms the basic unit that builds 
our range of CXT GPUs from one up to four SPU units per GPU core, which can then scale even 
further thanks to our decentralised multi-core system.

Ray Acceleration Cluster

BTU
Box Tester Unit

RS
Ray Store

DTTU
Dual Triangle Tester Unit

PTU
Procedural Tester Unit

BPS
Box Primitive 

Scheduler

PCG
Packet Coherency 

Gather

RRC
Ray Reference 

Counter

RTS
Ray Task  

Scheduler

URI
USE/RAC  
Interface

L4
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Building Blocks

Ray Testers
Each RAC contains several ray testing units – these are fixed-function blocks that are responsible 
for checking if there is an intersection between the ray and the respective primitive, be it a 
bounding box that forms the bulk of the bounding volume hierarchy (BVH), triangles or  
procedural primitives. 

As the acceleration structure consists mostly of a hierarchy of bounding boxes, the number of 
box testers is logically the largest, and this testing extensively uses parallelism for the highest 
efficiency; e.g. testing rays/boxes in bulk. The triangle testers are next, and, as triangles are by 
far the most popular primitive for building 3D geometry, this type of testing is highly optimised 
in hardware and also parallel in nature. As shown in the block diagram we deploy a “Dual Triangle 
Texting Unit”, which means we test each ray against two triangles, again, taking advantage of 
parallelism for optimal density and power and performance efficiency. 

Last is a unit for handling procedural tests. This is supported, but as indicated by the APIs, is 
slower but much more flexible, as here a special intersection shader program has to be executed 
to handle the testing. The exact count of units and ratios depends on the target performance 
level of the RAC (e.g., more units for higher performance RAC designs).

Ray Store
The next unit is the Ray Store Unit and as we want to keep both the ALU and the RAC fully loaded 
we need storage to allow these units to operate concurrency. This storage is also essential to 
allow for coherency sorting (see next) and, as such, the Ray Store unit holds ray data structures 
during processing, keeps data on chip and provides high-bandwidth read/write access to all units 
in the core.

Packet Coherency Gather
The Packet Coherency Gather unit is a unique and patent-protected block that makes the Photon 
architecture a Level 4 RTLS solution. It is responsible for analysing all active rays and creating 
packets (groups) of coherent rays (rays with similar trajectories) to test against the scene 
together. By testing and processing coherent rays we enable parallelism and achieve higher 
processing and bandwidth efficiency, as thanks to data re-use we can achieve high hit rates on 
our cache structure.

Ray Task Scheduler
The Ray Task Scheduler is responsible for managing the interaction between the ALU in the GPU 
core handling resource allocation and coordination and communication between all processing 
stages within the RAC as well as coordination with the ALU/USC inside the GPU.

Box Primitive Scheduler
The Box Primitive Scheduler is the hardware that manages the process of walking the BVH 
structure, triggering box, triangle and procedural intersection tests and the follow-on work as 
required by the results of each operation. 
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Building Blocks continued...

Ray Reference Counter
The ray reference counter is an essential part of the scheduling activities and its role is to keep 
track of the work per ray that is still pending and check that all ray testing is done so the result 
can be sent back to the ALU. As rays need processing this is an incrementing counter, and, as  
the jobs generated as part of the BVH testing complete the counter is decremented, until you  
end at zero when all tests are finished. Tracking what is in flight and what is done is essential  
due to the coherency shuffling, which groups rays into different packets based on coherency  
for processing.

USC/RAC Interface
The USC/RAC interface is the data movement engine between the ALU units – also called Unified 
Scalable Clusters (USCs) –  in the PowerVR GPUs and the RAC. This unit receives ray requests 
and sends ray results across this interface. As in all processing, effectively and efficiently 
handling data movement is key to avoiding bottlenecks.
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Power Efficiency Focus

Power efficiency is king today, not just in mobile, where it extends battery life, but increasingly 
also with regards to thermals. This can impact smartphones as you do not want to burn your hand 
while running a AAA-game or suffering throttling where the user experience drops due to low 
clock frequencies and hence lower framerates. Thermals are also critical in server environments 
where the density of the racks is very much thermally constrained. As such, power efficiency has 
always been at the forefront of all architectural choices made by Imagination in developing our 
PowerVR architectures.

The Ray Tracing Level System is also very much about power and performance efficiency and 
the key thing for ray tracing is understanding just how much more power-efficient fixed-function/
specialised hardware is versus programmable hardware. Fundamentally, programmability 
offers ultimate flexibility, and this can be extremely powerful and valuable, but that flexibility, like 
anything in life, comes at a cost and that cost is power efficiency and density. We learned this in 
the early stages of our ray tracing history, where we worked out how many USCs, we would need 
to handle the ray-box intersections at the same speed as a relatively modest dedicated fixed-
function unit. A visual representation of this can be seen here:

Essentially, just doing a ray-box intersection test using programmable GPU logic, (essentially 
fused multiple adds), requires 44x more silicon area than what can be achieved in a fixed-function 
block. This is what a Level 2 RTLS solution focuses on – moving these computationally expensive 
ray-box and ray-triangle intersections into dedicated, specialised, more efficient hardware.
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Power Efficiency Focus continued...

Now, as already explained, with a Level 3 RTLS solution you shift even more of the ray tracing 
workload from programmable GPU logic. Indeed, we move near all ray tracing work from the 
USCs/shader units and move it into more effective specialised hardware. With Level 4, we 
further boost this efficiency by enabling effective parallelism with SIMD/SIMT style approaches 
rather than expensive MIMD, and we also solve processing efficiency as well as memory access 
efficiency by grouping rays that follow similar paths through the acceleration structure.

The following table summarises the levels and how they impact execution efficiency and the 
resulting effect on power, performance and bandwidth.

GPU Block 
Ray Tracing Task

Level 1 RTLS Level 2 RTLS Level 3 RTLS Level 4 RTLS

ALU Loading Full High Low Low

ALU Efficiency Low Low Medium High

Box/Tri Testers N/A Medium High Full

BVH Walking N/A N/A Yes Yes

Coherency No No No Yes

Cache Hits Low Low Low/Mid High

Bandwidth Usage High High Mid Low

Power Efficiency Very Low Low Medium High
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Ray tracing Metrics

Confusing Numbers
New hardware capabilities always trigger new metrics that try and indicate the performance 
level of the feature, and ray tracing is no different. The first ray tracing-enabled GPUs launched 
into the desktop market promoted a gigarays per second (GRays/s) number; a logical concept, 
because as we are tracing rays it would be good to have a sense of the hardware’s capabilities at 
doing this. Unfortunately, this is a problematic metric since a ray could miss the top-level scene 
bounding box and immediately return, or a ray could go down the rabbit hole of hundreds of 
box and triangle tests before it hits anything – so the number of rays you fire doesn’t equate to 
real-world performance. Essentially, if not all rays are equal in complexity, then how can we talk 
sensibly about GRays/s?

Later product launches saw a more classic approach to quoting performance which was to quote 
the box and triangle tests per second. While this is a more useful and factual metric, it still raises a 
lot of questions. What is the correct ratio between those rates? How efficient are those units and 
can they be used all the time? Or are they limited by cache hits or other data flow issues?

Finally, we have even seen ray tracing operations per second (RTOPs) claims, which is a made-
up metric that tries to translate the fixed-function capabilities of ray tracing hardware back to 
equivalent shader instruction costs and claims a random cost of 1000 ALU operations per ray. It 
makes for a nice big marketing number, but, as with GRays/s, is not meaningful, as the number is 
arbitrary and the cost could easily be higher or lower.

The Reality of Ray Tracing Benchmarks
Unfortunately, most GPU metrics have limited meaning, as most are poorly defined and lack 
context or specific benchmark conditions. The new ray tracing metrics are no different in this 
respect. While these metrics have some value – they usually reference the peak capability of a 
hardware processing unit – in real-world usage, they will vary wildly in efficiency and utilisation, as 
the peak number metric does not indicate its efficiency.

As mentioned above, the ray rate in GRays/s is a good example of this. It’s just too vague and 
generates a “my number is bigger than your number” race. In reality, GRays/s will be influenced by 
the scene: larger scenes will have deeper hierarchies with more boxes and triangles to test in the 
hierarchy to find the hit/miss, resulting in a lower gigaray rate, depending on how complex your 
test scene is. 

This is why original gigarays per second number claims were in fact, “gigamiss” per second rates, 
as basically, the claimed number was for a scene where all rays would immediately miss the whole 
scene. This is a bit like quoting game performance while staring at the floor or sky with nothing 
complex is in view. The box and triangle test rates are slightly more valuable but ignore the 
utilisation efficiency of these units, especially in a Level 2 RTLS solution, where it’s likely that the 
processing will be bandwidth and/or shader bound, and not test bound – so again those numbers 
become a theoretical peak – not a real, usable number. 
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Ray tracing Metrics continued...

Unfortunately, that leaves us with benchmarks where we lock all these conditions: not only the 
scene complexity but the view direction and the size of each ray’s payload, as the mix of ALU 
and ray bound cycles will all impact the number that will come out. A good example of this is 
Imagination’s internal work on acceleration structures, where a fast real-time builder versus 
a slower, but superior builder can impact the achievable performance by more than 30%, as 
the more efficient hierarchy culls away work much better. Of course, benchmarks can still be 
misleading as the scene may be a better fit to the ray versus box ratio one vendor may have 
selected. The benefit of selling IP is that a lot of those ratios can be tuned quite late in the game  
to match market and even customer-specific expectations.
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A Tale of Two Ray Tracing APIs

There are two distinct types of ray tracing which are exposed by both the Khronos Vulkan API as 
well as the Microsoft DirectX 12 ray tracing API. Both approaches are summarised in this section 
and both modes are fully supported by the PowerVR Photon Architecture to ensure the highest 
possible content compatibility and efficiency.

VK Ray Query
Also known as inline ray tracing under Microsoft DirectX Raytracing (DXR), ray queries are quite 
easy to understand, as essentially any shader or kernel (compute) can issue a ray query, which 
kicks off the whole ray tracing process as described in previous sections. In this system, the 
resulting hit/miss information returns to the same shader/kernel that has to deal with it. Therefore, 
the ray tracing is very simple and, as per the DXR name-style, is effectively an inline process.

A simple example of this would be shadow rays. Here, the scene is rendered as normal, but now 
in the fragment/pixel shader a ray is emitted towards the light source, and when that source is hit 
we know the current pixel is lit and we can execute the correct code in the shader. If we hit any 
other object in the scene we know it is in shadow, and again, you can execute the correct code in 
the shader. Reflections would be a lot harder in this scheme since as the reflected object is hit we 
have to trigger a lot of complexity to figure out how to render the correct colour for that reflected 
object, and this all must be handled in the original casting shader.

Graphics, compute or ray tracing pipeline

Explicit ray tracing management within single shader

RayQuery

Proceed?

Confirm Hit, Generate Details  
or TerminateHandle Result

Acc, Structure  
Traversal

Derived from Kronos
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A Tale of Two Ray Tracing APIs continued...

Vulkan Khronos Ray Tracing Pipelines
Vulkan ray tracing pipelines are much more complex, and are illustrated below.

The ray tracing pipeline starts from a specific Raygen shader, which is typically a camera/screen 
from which you cast primary rays into the scene, to start the process of generating the ray traced 
image. The key difference with ray query is that hits and misses trigger recursion, so based on hit 
and miss events, (as shown in the diagram), the correct shaders will be triggered and executed. 
This means that complex and multiple bounces (e.g., primary ray to secondary and following rays) 
are more easily handled and complex full ray traced concepts are easier to implement. 

It should be noted that the impact of the ray pipeline on the ray tracing hardware itself is limited; 
e.g., both approaches trace a ray through the acceleration structure and return  
miss/hit information. 

The key change is how that result is handled; explicit/manual in the shader for ray queries, and 
more dynamic implicit in the ray pipeline case. The main impact on handling the ray pipeline 
functionality is on the compute/GPU side, where recursion support is needed and the ability 
for the GPU to schedule its own shaders/kernels based on hit/miss information. This recursion 
support has interesting performance complexities as a ray could bounce through a lot of different 
objects, each launching more shaders/kernels and requiring more resources inside the GPU. As 
such, one of the performance pitfalls to be aware of is that at some point fast on-chip storage will 
run out and recursion will trigger an overflow to system memory, which could impact performance 
significantly (a “cliff event” where performance suddenly changes dramatically).

As a result, for most initial rendering algorithms, the usage of ray queries will be recommended 
as this is simpler to add to existing game engines and is also likely to offer more predictable 
performance across implementations.

Ray tracing pipeline

Implicit ray and shader execution management

RayGen Shader

Miss

Any Hit

Shader Binding Table Buffers

Shading info ... ...

Intersection

Closest Hit
Recursion

Acc, Structure  
Traversal
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Derived from Kronos
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A Tale of Two Ray Tracing APIs continued...

Acceleration Structures
Throughout this whitepaper we have made references to acceleration structure and bounding 
volume hierarchy, which is the high-level construct we use to cull back the number of ray-box and 
ray-triangle tests we need to do as illustrated below:

As the diagram shows, the bounding volume hierarchy provides an acceleration mechanism 
where we systematically check the bounding boxes, and, if we miss a box, we know we can ignore 
all the boxes/triangles underneath this level. 

This makes it an acceleration structure since we reduce the process of doing the ray testing 
to the minimum possible. No doubt, many readers will have already realised that this structure, 
and the quality and heuristics used in its creation, will have a significant impact on how efficient 
the hardware will be, since an optimal structure could cut work away much effectively than a 
simplistic, poorly constructed structure. Therefore, the APIs expose both fast and slow methods 
of generating this acceleration structure. 

The fast-building algorithms are essential for objects which are animated and change extensively 
from frame to frame to maintain high frame rates. The slow-building methods should be used at 
load-time (or even offline during development) for static objects which will be used throughout 
their lifetime and hence should be as optimal as possible. It’s also important to understand what 
“animated” really means for an acceleration structure and this will become clear as we introduce 
the next concept: acceleration structures. 

These are built out of two elements, a top-level acceleration structure (TLAS) and multiple 
bottom-level acceleration structures (BLAS). What we have described above is more of BLAS,  
as it contains an acceleration structure for an object such as the bunny rabbit in our example.  
The TLAS consists of multiple BLAS structures. 

Acceleration structure example. A box/triangle based bounding volume 
hierarchy enabling hierarchical culling of box/triangle testing work.

X
X

X
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A Tale of Two Ray Tracing APIs continued...

Effectively, the TLAS instances BLAS structures one or many times to build the world, where the 
same BLAS can have multiple transformation matrices (which move them around in the world) 
and properties. As such, it’s similar to the use of instancing in traditional graphics geometry 
processing. What this also means is that moving objects, e.g., translations or rotations of items in 
the world, are handled only in the TLAS and do not change the BLAS itself. 

What this means is that a car driving around in the world is a static object and with a static BLAS, 
the moving of the car and the rotation of its wheels is possible with only modifications of the 
TLAS transformations. Also, note that for ray tracing the movements of the camera just change 
the direction and traversal of the rays through the acceleration structure, hence, camera changes 
also do not impact the BLAS nor TLAS information. TLAS updates are very cheap and adding/
removing objects and changing transforms is quick and easy. However, building/creating a new 
BLAS is expensive. 

Some readers will have already realised that dynamic BLAS cases are possible in games, notable 
techniques such as matrix-skinned characters changes or dynamic morphing distorting objects 
using shaders. These require rebuilding of the BLAS and there a fast/balanced algorithm in real-
time should be used. Memory footprint and bandwidth are also critical, so instancing objects 
is key. We do not want to store each tree repeatedly in the structure when we can just instance 
them since a tree instanced many times requires storage only once as BLAS (largest data 
structure) and only requires extra TLAS references. This is very important, since referencing the 
same BLAS means not only less storage cost in system memory. but it also means potentially 
better cache hits and data re-use in traversal, since each instance points at the exact same data 
in the BLAS.

So, what exactly is inside the BLAS and how is it created? Well, this is opaque to the developer. 
It’s the secret sauce that each vendor brings to the table and the APIs provide TLAS/BLAS 
building calls in the API with different performance characteristics. Using the correct mode will be 
important and using offline tools, where available, will also be key for mobile usage.

Build Step

Top-Level Acceleration Structure (AS)

Bottom-Level AS Bottom-Level AS

Transform & 
Properties ... ...

Vertex and Index Buffers Instance Buffer

Derived from Kronos

Acceleration Structure Hierarchy
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A Walk Through the GPU and RAC

Before we hit the RAC, a variety of other processing steps are needed inside the GPU and for a 
hybrid rendering workload using ray queries this can be summarised as follows:

The application renders a scene by issuing API calls, which are processed by our GPU driver 
constructing command buffers and data structures (textures, shaders, buffers) in memory. 
The driver will also kick the hardware, potentially waking it up from power-saving modes or just 
flagging that more work is available for processing. This kick triggers the embedded firmware 
processor, which will handle all internal activity management and ensure that all jobs respect 
priority levels set. 

Typically. the first thing which will happen is to kick off geometry processing, meaning that  
draw calls become tasks inside the GPU, where each task is scheduled and will aim to reserve 
required resources inside the USC for processing. Vertex/geometry data would then be fetched, 
and, as data is available, tasks become active and would execute the shader program. This 
generates output geometry, which then hits a range of fixed-function blocks, such as culling, 
clipping, tiling and geometry compression, followed by a write-out to memory of the intermediate 
parameter data. 

This parameter data is the per-tile linked list of geometry, which is potentially visible within each 
tile, thus enabling our tile-based deferred rendering to work its magic. All of this work is the first 
phase of processing, which we typically refer to as the geometry phase or tile accelerator (TA) 
phase, a name which you can see in our performance analysis tools. This phase runs concurrently 
with the next rendering phase.
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A Walk Through the GPU and RAC continued...

3D processing within a tile-based deferred rendering architecture starts with hidden surface 
removal. All 3D processing is done – hopefully, not surprisingly – tile by tile. This means that 
position data is fetched using the parameter-data linked lists structures. For all geometry data 
within the tile depth/stencil tests are executed, generating visibility lists inside a tag buffer, which 
indicates what objects are visible for each respective pixel. Once all geometry is processed, 
we thus have per-pixel tagged visibility lists, which logically is one single opaque object (since 
everything behind it would be hidden/removed) and optionally several alpha-blended layers in 
front of the opaque object. 

Rendering is then kicked off in the correct depth order and sorted per shader with each of these 
representing a task. Task processing means that first, the schedulers reserve required resources 
within the USC for processing, then the task and data is prefetched before the task becomes 
active and the correct shader program instructions are executed. This is where the RAC will be 
triggered if the shader program in the task contains ray query calls.

For shaders with ray query calls the task will not only request USC resources but also request 
RAC resources. Executing the actual ray tracing happens as the shader emits required ray 
information into the RAC using the USC/RAY Interface (URI) and this information is stored in the 
Ray Store. 

Similar to texture operations, following the transmission of the required ray information into the 
RAC, the USC will place the task into a de-scheduled wait state, effectively meaning that the USC 
will start to work on other tasks/jobs while the RAC does its work. As you can imagine all this 
work is massively parallel as we will not just be processing one fragment/work item or ray but are 
processing many threads in parallel within each task (warp). The hardware will also have many 
such tasks in flight to ensure latency absorption and high utilisation. Effectively then, the RAC will 
have many rays stored which require processing.

At this point, each ray is tracked by the ray reference counter, which increases for each test 
required. These start from one and will increment as more boxes are intersected, thus triggering 
more box tests, as per the acceleration structure. The ray processing is done in coherent groups 
which means that the packet coherency gathering block will be scanning through rays aiming 
to build packets of rays that coherently traverse the structure. As packets fill up, they will be 
executed, running the rays through the box and/or triangle and/or primitive testers as needed. 
This processing runs via a dedicated acceleration structure cache (ASC), which ensures that data 
is also re-used across packets. 

The ASC is only one cache level of course. Further caching will happen throughout the whole 
GPU memory hierarchy, including the largest SLC cache level and potentially even system-level 
caches at the SoC level. As this processing completes, the Ray Reference Counter (RRC) will 
increment and decrement as tests are scheduled and completed until processing is finished 
when the reference count hits zero and a result is ready for the ray.

At this point the ray, or rays, will be scheduled to return control to the USC for further shader 
processing and this means that the USC task will be resumed. The resulting ray data can then be 
read by the USC via the URI from the Ray Store which had reserved resources for all processing.
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A Walk Through the GPU and RAC continued...

At this stage processing of shaders would continue as normal until the tile is completely drawn by 
executing a mix of shaders/kernels with and without ray queries. During this process, other fixed-
function blocks such as the texture processing unit would be used to execute the shaders. 

It’s important to realise the execution at this point is a mix of many tasks: geometry would be 
processing, compute tasks could be in flight, the RAC would be tracing rays and finding hits/
misses, while the shader core is executing code as part of all of these operations. 2D and 
housekeeping tasks could also be in flight to copy data or generate mipmaps. With such a diverse 
range of jobs, we aim to obtain maximum efficiency across all processing units and ensure 
that latency of any processing tasks and memory access is fully hidden by processing other 
independent tasks.

Once the tile is finished this would trigger the pixel back end, which writes the finished tile to 
memory, potentially using Imagination Image compression (IMGIC) framebuffer compression.

Conclusion
In this paper, we have taken you on a journey through the Imagination’s PowerVR Photon 
architecture and demonstrated how it has been designed from the ground up to manage the 
issues inherent in delivering effective ray tracing in a mobile power budget. By drawing on our 
long history of creating IP with low power, and low bandwidth characteristics, our customers can 
be sure that our Photon-enabled GPUs are the ideal choice to bring the revolutionary benefits of 
ray tracing to a mobile audience. 
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Appendix

Developer Tools
The RAC unit is fully instrumented with hardware counters providing developers with extensive 
insights into the efficiency of their ray tracing application as it runs on CXT. Access to these 
counters is through Imagination’s PVRTune application which provides insights into wide range  
of traditional rasterisation counters as well as a new set of ray tracing specific counters.

The latest version of our SDK also includes a PVRRayTracingSimulation. A small collection of 
Vulkan layers that, as the name suggests, simulates the capabilities and behaviour of PowerVR 
ray tracing hardware; including acceleration structures. This is an exciting time for graphics 
development as more and more hardware offers ray tracing support and these tools allow 
developers to make a head start. The PVRRayTracingSimulation binaries can be downloaded 
from our developer portal.

PVRTune aids developers by offering deep insights into ray tracing application behaviour

https://developer.imaginationtech.com/downloads/
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Appendix continued...

Hybrid Rendering - Launch Demo 
Screenshots from our PowerVR Photon demo showing ray traying off, on, and with ray traced 
global illumination.

Green from the wall bouncing off reflective materials.
All objects with soft reflections

Demo features GI, per pixel RT, denoising, lighting, tone mapping and TAA.
RT GI adds great ambient lighting grounding the objects in the scene  
and produces the most realistic lighting.

RT OFF

RT ON

RT+GI ON
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Appendix continued...

Hidden Coherency When Ray Tracing
While ray tracing is “embarrassingly parallel” in nature, one of the reasons why real-time ray 
tracing has taken so long to become practical is that while the parallelism is there, it’s very often 
divergent and non-coherent. This can be understood from the below illustration.

In the real world, materials have different properties – some are smooth, but most are rough – and 
therefore, for realistic surfaces, rays will not be reflected in the same way, but rather bounce in a 
variety of directions. The result is divergence, e.g. ray bouncing from one pixel to the next, with 
rays going in different directions. Consequently, the ray will cross the BVH boxes along different 
paths – thus causing divergent memory accesses – and, logically, rays travelling in different 
directions will also intersect with different triangles, triggering different shader programs – thus 
causing divergence in the shader execution.

Divergence is bad for GPUs as while they are great at processing highly parallel workloads their 
SIMD architectures only makes sense if those workloads are coherent and similar. If each pixel 
wants to do something different, the tricks upon which GPUs depend for high execution and 
bandwidth efficiency fail. This means you end up with a brute force approach (i.e., the use of large 
amounts of ALUs and ray tracing units), which is required to compensate as the processing flow 
struggles to use them efficiently (namely despite high peak throughput count on paper, poor 
utilisation delivers low throughput numbers in real-world use).

Divergent

Real materials

Coherent

Perfect surface

When rays hit surfaces that are not perfectly smooth, they will bounce off in different directions, causing divergence.



© Imagination Technologies 35

Appendix continued...

However, while rays from one pixel to the next may be divergent this does not mean that there is 
no “coherency” among the soup of rays that are bouncing around. Again, this is best illustrated in 
the image below.

The reflective shape below shows hidden coherency in the rays, which reflect from this object 
e.g., you can see that the person wearing yellow is reflected many times, meaning those rays 
go into the same direction and are, indeed, coherent. What’s more, if we can group those rays, 
they will follow a similar path through the BVH, providing us with a high rate of cache hits and 
data re-use. They will also ultimately hit and intersect with the same triangles and would likely 
also execute the same or similar shader programs, consequently delivering high efficiency in 
traditional parallel GPU ALU pipelines.

What we need therefore is a way of capturing this “hidden” coherency to deliver this efficiency 
improvement. Imagination did so with its 2014 PowerVR Wizard GPU architecture, which 
pioneered real-time ray tracing within a modern GPU architecture and introduced concepts  
such as hybrid rendering (mixing traditional and ray traced rendering), by including a coherency 
sorting engine.

The Packet Coherency Gather engine finds and sorts coherent rays in a scene and then packages them up for efficient processing on the GPU.
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